# SNIA Green Storage Overview & Proposal

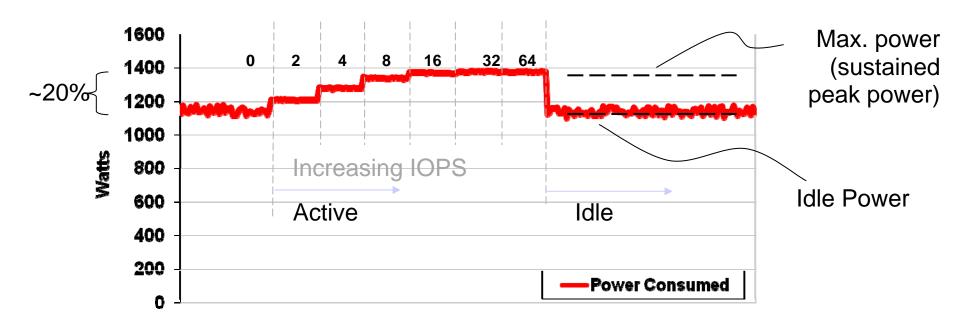
Erik Riedel (EMC), Chair, Green Storage TWG Leah Schoeb (Sun), Chair, Green Storage Initiative



15 October 2009 (revision 2)

## **SNIA Green Groups**




- Green Storage TWG
  - Erik Riedel (EMC), chair
- Green Storage Initiative
  - Leah Schoeb (Sun), chair

17 face-to-face meetings plus weekly conference calls since August 2007, regular 20+ participants from across the industry

- Design/Spec Metrics Sub-group
  - Patrick Stanko (Sun), chair
- Power Supply Sub-group
  - Don Goddard (NetApp), chair
- Capacity Optimization Sub-group
  - Alan Yoder (NetApp), chair
- Operational Metrics Sub-group (\*)
  - Shinobu Fujihara (IBM), chair
- ◆ Infrastructure Sub-group (\*)
  - Steve Wilson (Brocade), chair

# Storage Power – Idle vs. Active





- Ideally, systems would consume minimum power in all modes
  - Example system consumes significant power in idle (80% of max)
- % of time in Idle versus Active depends on storage type, application and workloads; available optimizations will vary
- Power consumed not linearly proportional to workload

# Storage Power – Idle



#### Equation 6-1: Average Idle Power

$$P_i = \frac{\sum W_i}{n}$$

Where:

- SNIA Green Storage Power Measurement Technical Specification www.snia.org/tech\_activities/publicreview [Green Power v0.0.18 DRAFT] January 2009
- P<sub>i</sub> is average idle power
- W<sub>i</sub> is power in watts measured in each sampling interval i
- n is the number of samples gathered by the power meter during the measurement interval.

### Idle Metric

#### Equation 7-1 SNIA Idle Power Metric

$$P = \frac{C}{P_i}$$

#### Where:

- P is the SNIA Idle Power Metric
- C is the total capacity of the SUT
- P<sub>i</sub> is the average idle power

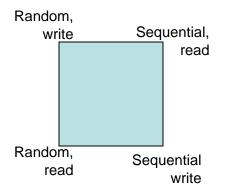
**Green Storage TWG** 

# Desired Metric - "Productivity"



"typical workload", with levels




• "four corners", maximum performance, maximum power

Detailed Performance Benchmark – results/W



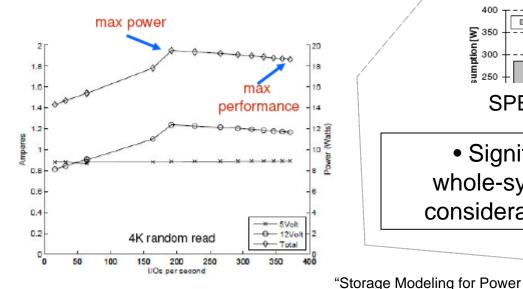


Standard Performance Evaluation Corporation



Green Storage TWG

The Green Grid Productivity Proxy Proposals
Example – Proxy #4 – bits/kilowatt-hour






## **Complications**

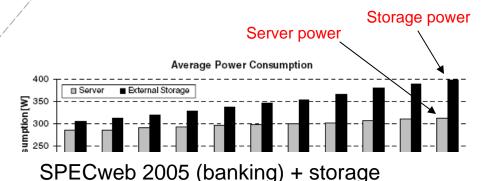


Max power =/= Max performance



#### Single disk drive power profile

#### Storage Modeling for Power Estimation


Miriam Allalouf • Yuriy Arbitman \* Ronen I. Kat • Kalman Meth •

Michael Factor Dalit Naor

IBM Haifa Research Labs

Power consumption is a major issue in today's datacenters. Storage typically comprises a significant percentage of datacenter power. Thus, understanding, managing, and reducing storage power consumption is an essential aspect of any efforts that addless the total power consumption of datacen-

decade. We observe that the power consumption of disks is composed of fixed and dynamic portions. The fixed portion is consumed in the idle state and includes items such as the power consumed by the spindle motor. The dynamic factors are affected by the I/O workload



The Next Frontier for Power/Performance Benchmarking: Energy Efficiency of Storage Subsystems Significant

Klaus-Dieter Lange

Hewlett-Packard Company, 11445 Compaq Center Dr. W, Houston, TX-77070, USA Klaus.Lange@hp.com

Abstract. The increasing concern of energy usage in datacenters has drastically changed how the IT industry evaluates servers. The energy conscious selection of storage subsystems is the next logical step. This paper first quantifies the possible energy savings of utilizing modern storage subsystems by identifying inherent energy characteristics of next generation disk IO subsystems. Additionally, the power consumptions of a variety of workload patterns is demonstrated.

Keywords: SPEC, Benchmark, Power, Energy, Performance, Server, Storage, Datacenter.

#### 1 Introduction

whole-system

considerations

Estimation", Miriam Allalouf, Yuriy

Arbitman, Michael Factor, Ronen I.

Kat, Kalman Meth, and Dalit Naor;

IBM Haifa Research Labs;

manuscript; March 2009

Today's challenge for datacenters is their high energy consumption [1]. The demand for efficient real estate in datacenters has moved to more power efficient datacenters. This increasing concern of energy usage in datacenters has drastically changed how the IT industry avaluates servers. In resonance the Standard Performance Evaluation

"The Next Frontier for Power/Performance Benchmarking: Energy Efficiency of Storage Subsystems" Klaus-Dieter Lange; SPEC Benchmark Workshop 2009; January 2009

6

#### ABSTRACT

and include items such as the power for data transfers

# SNIA Measurement Proposal - Draft



#### Idle Metric

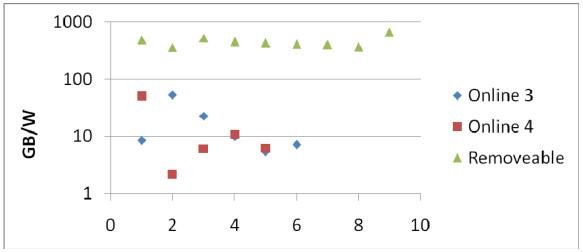
- GB / W (24-hour average W, raw capacity)
- 24-hour test preceded by a short conditioning phase
- www.snia.org/tech\_activities/publicreview [Green Power v0.0.18 DRAFT]

#### Active Metrics

- 4-corners test + 2-point ramp
- random read (8 KB @ 30ms response time, 10 minutes) IOPS/W
- random write (8 KB @ 30ms response time, 10 minutes) IOPS/W
- sequential read (256 KB @ 30ms response time, 10 minutes) MB/s/W
- sequential write (256 KB @ 30ms response time, 10 minutes) MB/s/W
- 70/30 read/write random 25% maximum (8 KB @ 30ms, 10 minutes) IOPS/W
- \* 70/30 read/write random 100% maximum (8 KB @ 30ms, 10 minutes) IOPS/W
- can be used as conditioning phase for idle
- many details still under discussion [preliminary proposal only]

# Applicability of Metrics

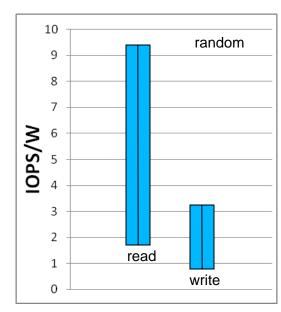


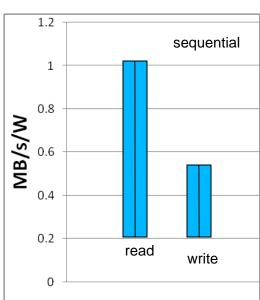

|                   | Online     | Near<br>Online | Removable<br>Media | Virtual Media<br>Library | <b>A</b> ppliance | Interconnect |
|-------------------|------------|----------------|--------------------|--------------------------|-------------------|--------------|
| Idle              | Υ          | Υ              | Y                  | Y                        | n/a               | n/a          |
| 2-corners<br>MB/s | Υ          | Y              | Y                  | Y                        | <b>Y</b> *        | Y            |
| 2-corners IOPS    | Y          | n/a            | n/a                | n/a                      | <b>Y</b> *        | Y            |
| Ramp<br>IOPS      | <b>Y</b> * | n/a            | n/a                | n/a                      | <b>Y</b> *        | Υ            |

# Early Results - September 2009



### Idle Metric


20 systems




## Active Metrics

- ~12 systems
- mixed taxonomy (online only)







## Add'l Considerations



#### Mixed Workloads

- Mixed workloads could form a more robust representation of customer environments (accepting a wide range in practice)
- Varying Workload Intensity Tests (Ramp)
  - Real Data Center workloads vary throughout the day
  - May capture variations in power efficiency (like power supplies)
  - Some of our measurements have shown variance between maximum power and maximum performance (mixed vs. 4-corners)
- Our testing has been with a 4-level ramp (25%, 50%, 75%, 100%) at 70/30 read/write 8 KB @ 30ms response time
  - Inconclusive to date (measurement continues)

# Reliability, Availability, Serviceability (RAS)



Goal – do not lose data and have system available all the time

| Power       | Features                                                                                                                                                                                                               |
|-------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| High        | Dual Controllers or No-SPOF Controller; Mirroring (local and remote, sync or async)                                                                                                                                    |
| Medium/High | RAID 1, 4/5, 6; Snapshots (full and delta); RAID/Disk scrubbing                                                                                                                                                        |
| Medium      | Multi-pathing; Disk sparing; Dual robotics; Background media scan / maintenance (drive level); Dual Power Supplies                                                                                                     |
| Medium/Low  | Remote management; HARD/DIF (end-to-end data validation); RAID rebuild on drive failure; Hot swap drives                                                                                                               |
| Low         | NVRAM/Batteries/UPS (power fail); Concurrent microcode update; Concurrent OS update; Redundant PDU/Power; Remote diagnostics; ECC validation btwn modules; Lost write protection; Encryption; Automatic load balancing |
| Savings     | Variable-speed fans (Medium); Head-unloading (Low)                                                                                                                                                                     |

Investigating quantification for Highs & Mediums

# Capacity Optimization



- Software-level optimization features are critical to Data Center-wide power savings
  - For example, if data deduplication reduces the amount of stored data by 2x, then the energy use is 1/2
- Wide variety of technologies, wide variety of implementations
  - Challenging to baseline, compare, and quantify
- Key initial focus areas of study
  - Data Deduplication
  - Thin Provisioning
  - Delta Snapshots

# Meetings in 2010 (Planned)



| October | LE  | 200 | 0 |
|---------|-----|-----|---|
| October | 10. | ZUU | 7 |

November 4-5, 2009

January 25-26, 2010

February 22, 2010

February 23-26, 2010

March 15-16, 2010

April 22, 2010

May 17-18, 2010

July 12-13, 2010

August 30-31, 2010

September 2010

November 9-10, 2010

#### **Event** Location

EPA Workshop @ SNW Phoenix

TWG Face-to-face (TSG/LISA) Baltimore

TWG Face-to-face (Symp) San Jose

USENIX SustainIT Conference San Jose

USENIX FAST Conference San Jose

TWG Face-to-face (Symp) San Antonio

Earth Day Worldwide

TWG Face-to-face (TSG) Colorado Springs

TWG Face-to-face (Symp) San Jose

TWG Face-to-face (TSG) TBD

Storage Dev Conference Santa Clara

TWG Face-to-face (TSG/LISA) San Jose

# Thanks for Everyone's Time Q & A

