Energy Star for Computers 6 – Battery Charger System and Graphics Efficiency

Stakeholder Meeting, March 10, 2011 Pierre Delforge

Agenda

- 1. Battery charger system efficiency for notebooks and tablets
- 2. Discrete graphics

Include battery charger system in computer spec

Notebook battery charger system 24-hr efficiency varies broadly:

ID	Туре	24h Efficiency (%)
BC284	Laptop	69%
BC286	Netbook	55%
BC297	Netbook	44%
BC302	Laptop	33%

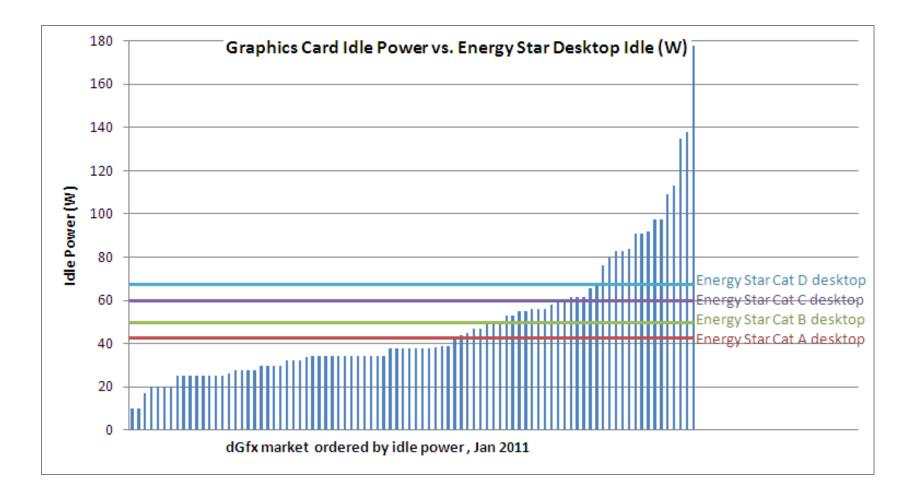
Source: PG&E, tested in ECOS laboratory

Battery charger system accounts for a significant part of notebook annual energy use:

	CSL 0 (kWh)	CSL 1 (kWh)	CSL 2 (kWh)
DOE - Manufacturer Data	32.9	10.0	6.2
DOE - Test and Teardowns	45.5	11.6	5.7

For reference:	Energy Star 5 Notebook	Base TEC (kWh)
	Cat A	40
	Cat B	53
	Cat C	88.5

Source: DOE



CSLs: DOE Candidate Standard Levels.

3

CSL0: Bottom of Market; CSL1: Mid-Market; CSL2: Best in Market

Discrete graphics idle power represents 25%-300% of Energy Star 5 idle power budget

Source: NRDC research based on 3rd-party data such as Tom's Hardware

E* 5 capability adjustments not adequate for majority of desktop discrete graphics

Energy Star 5 Capability Adjustments:

Capability	Desktop		Notebook	
Premium Graphics (for discrete GPUs	Cat A,B	35 kWh (FBW <= 128-bit) 50 kWh (FBW > 128-bit)	(10W) (14W)	Cat B: 3kWh (FBW > 64-bit)
with specified Frame Buffer Widths)	Cat C,D	50 kWh (FBW > 128-bit)	(14W)	

- ES5 allowances lower than idle power of best discrete graphics on the market today
- Results in very few desktops with discrete graphics qualified
- To increase Energy Star adoption in desktops, ES6 needs to allow desktops with the most energy efficient discrete graphics to qualify

Focus on discrete graphics

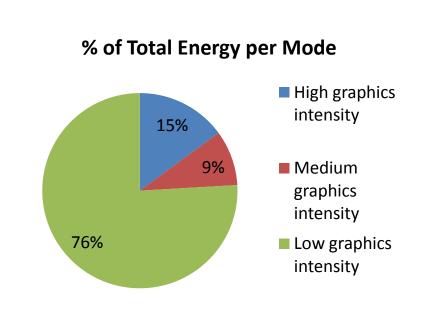
GPU shipments (million units)

	World				
2010	Desktop	Laptop	Total		
Integrated	194.5	155.8	350		
Discrete	74.8	59.9	135		
Total	269	216	485		

 Discrete graphics not a niche: still many desktops shipped with discrete graphics, especially consumer desktops

Source: Mercury Research, Jon Peddie Research

Discrete graphics responsible for est. 18% of desktop energy use

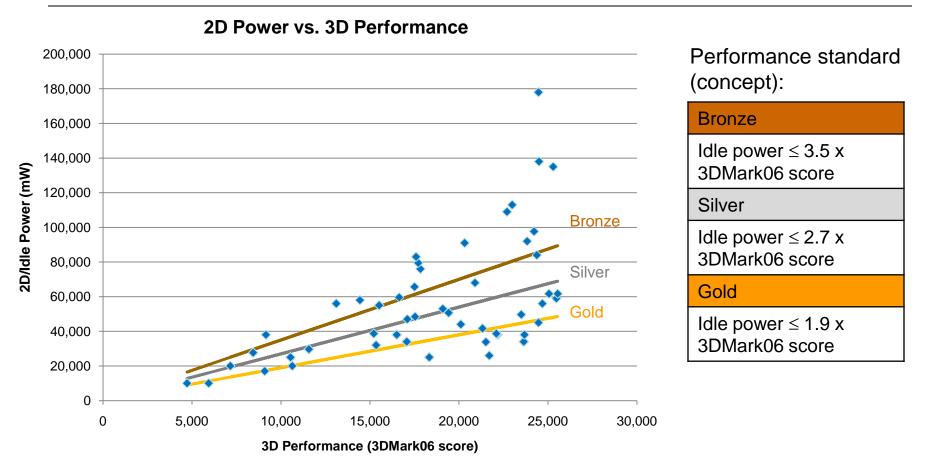

	US Stock (million)	US Annual Energy Consumption (TWh)
Desktop PCs	155	59.8
Discrete desktop graphics cards	65.9	10.8
		18%

Most video card energy use spent in idle or low graphics modes (aka "2D")

Only a few PC applications require high graphics ("3D") processing:

Mode		Graphics intensity
Idle		Low
Internet	Browsing, Social Networking…	Low
Email		Low
Office	Documents, Spreadsheets, Presentations	Low
Media	SD Optical Disk (DVD), Video Streaming	Low
playback	High-Def (Blu-Ray)	Medium
Coming	SD Games	Medium
Gaming	High-Def Games	High
3D biz apps	CAD, Video Editing	High

- Focusing on 2D will capture most of the savings opportunity
- Latency: which mode require immediate high Gfx performance?
- 8 Test procedure: test for 2D Gfx energy use, not just strict idle


Two possible approaches: 1. Adders per ECMA 383 performance categories

	ECMA Categories						
	G1	G2	G3	G4a	G4b	G5a	G5b
Cat. A Discrete Graphics Adders							
Cat. B Discrete Graphics Adders							
Cat. C Discrete Graphics Adders							
Cat. D Discrete Graphics Adders							
Additional Graphics Adders (CAT A, B, C, D)							

- 7 ECMA graphics categories
- 4 Energy Star computer categories
- Additional graphics: for multi-card configurations (SLI/CrossFire)

Two possible approaches: 2. Performance-based standard

Similar approach to 80-Plus for PSUs: minimum efficiency level to qualify for Energy Star

Reducing graphics idle power from 32W to 5W would save 5 power plants in 2016

- Average DT dGfx idle power use on market in 2010: 32W
- Reducing discrete desktop graphics idle and low-graphics mode power from 32W to 5W, all else being equal, would save 5 TWh in 2010, and 13 TWh in 2016 in the US.
- This is equivalent to **2 and 5 medium power plants** (500 MW) that can be avoided just by reducing idle, not touching active power use.

