ENERGY STAR COMPUTERS V6 DRAFT 2 -NRDC INPUT

Pierre Delforge Natural Resources Defense Council

May 23, 2012

POWER SUPPLY EFFICIENCY INCENTIVE

Power Supply Incentive Proposal

□ Objective:

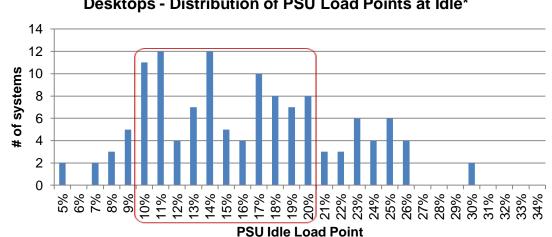
 Encourage higher efficiency power supplies, without mandatory requirement in Energy Star

Content:

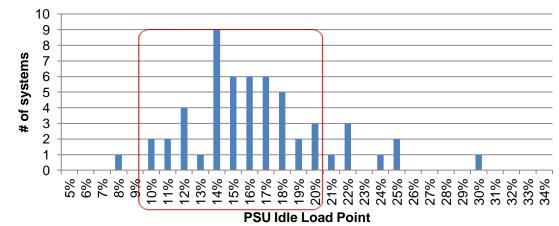
- Why incentivize higher efficiency power supplies
- What efficiency characteristics to encourage
- Impact of DOE NOPR
- How: proposed incentive mechanism

Why a Power Supply Premium Efficiency Incentive?

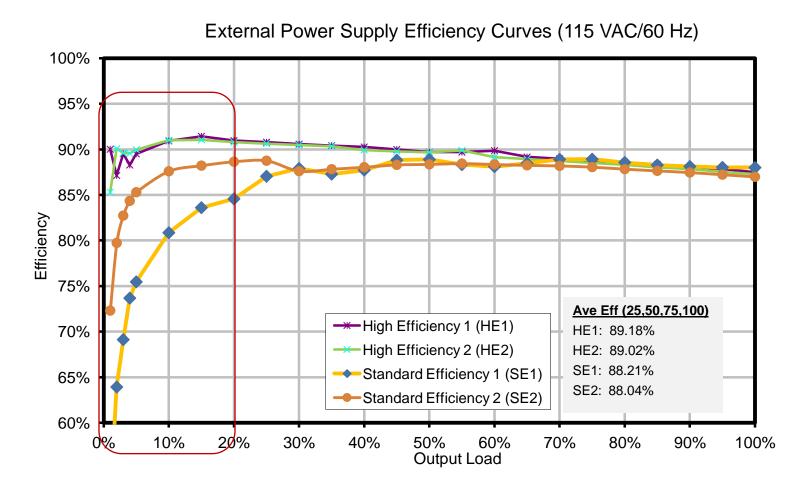
Why encourage incremental PSU efficiency instead of letting designers determine the most cost-effective ways to meet E* levels?


Because:

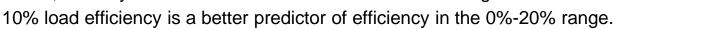
- 1. PSUs remain one of the largest sources of energy use within computers
- 2. Drive scale, affordability and innovation in highefficiency PSU market
- 3. Next step on journey towards highly efficient computers, in support of GHG reduction targets


What Efficiency Characteristics to Incentivize?

- The vast majority of desktops and notebooks idle in the 10%-20% PSU load range
- The standard EPS efficiency metric, average (25%, 50%, 75%, 100%) is not optimized for computers, but still relevant for active and charging loads
- Proposal:
 - Average efficiency metric AND
 - 10% efficiency


Desktops - Distribution of PSU Load Points at Idle*

Notebooks - Distribution of PSU Load Points at Idle*



(*) v6 Dataset Data Collection Units, weighted short/long idle

EPS Sample Shows Large Differences in Low-Load Efficiency

• These 4 sample units have almost the same efficiency (88%-89%) per the average efficiency metric, but very different efficiencies in the 0-20% load range.

6

10%-Load Test Method and Market Data

	IPS	EPS
Test Method	Same as 80-PLUS	DOE Test Method
Market Data	80-PLUS has been testing IPS at 10% load since Jan 2012	Anecdotal test results, manufacturer data

 More test data of EPS efficiency at 10% load would help set appropriate 10%-load efficiency requirements

Impact of DOE Proposed Federal Rule

	Single Output	Multi-Output			
Internal	DOE: Not covered	DOE: Not covered			
	Energy Star Requirement: • 80-PLUS Bronze (82, 85,82)	Energy Star Requirement: • 80-PLUS Bronze (82, 85,82)			
	Energy Star Incentive Opportunities:	Energy Star Incentive Opportunities:			
	Higher 80-PLUS level10%-load efficiency	Higher 80-PLUS level10%-load efficiency			
	DOE proposed: Level "VI":	N/A for computers (Xbox 360)			
External	• 50-250W: 88% • > 250W: 87.5%	<u>DOE proposed</u> : Level "VI" • > 50W: 86%			
	Energy Star Incentive Opportunities: • Higher average efficiency • 10% load efficiency • PFC?	Energy Star Incentive Opportunities: N/A			

- Caution: DOE proposed standard can still be changed in final rule.
- IPS opportunity unchanged by DOE standard.
- EPS opportunity adapted to account for DOE BCEPS NOPR.

Proposed Incentive – To Be Refined

		Criteria	Allowance
Internal	Silver +	80-PLUS Silver AND 10% load efficiency: 82%*	2%* TEC
	Gold +	80-PLUS Gold AND 10% load efficiency: 83%*	4%*TEC
External	88% +	(10% load efficiency without PFC: 88%, 10% load efficiency with PFC: 86%), AND TBD PFC requirements at 10, 25, 50, 75, 100 load	2%* TEC
	89% +	89% average efficiency, AND (10% load efficiency without PFC: 89%, 10% load efficiency with PFC: 87%), AND TBD PFC requirements at 10,25, 50, 75, 100 load	4%* TEC

10%-load efficiency requirements:

(*) Initial level proposals to be refined

• Aim for median of market per category

2% and 4% TEC incentives:

- Proportional incentive rather than set value, to reflect the proportional impact of PSU efficiency and ensure scalability across computers
- Can be adjusted to achieve a reasonable effect, e.g. 10% impact on qualification rates.

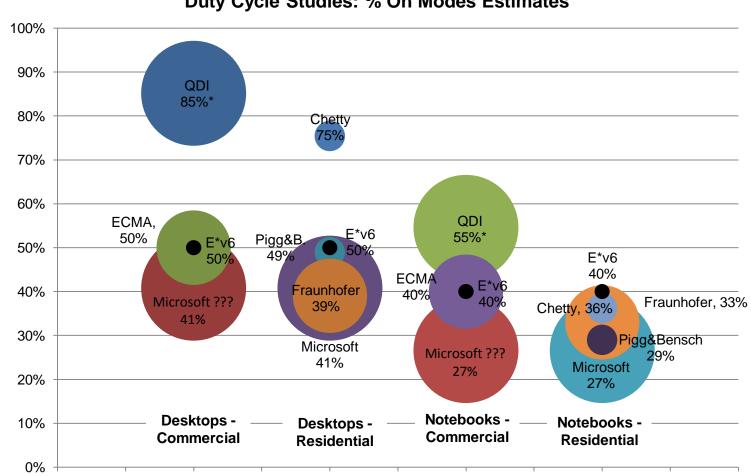
Conclusion

Incentive approach allows to continue to transform PSU efficiency without increasing cost of Energy Star compliance

MODE WEIGHTINGS

Computer Duty Cycle and Energy Star Mode Weightings

- Energy Star TEC and aggregate computer energy use estimates depend heavily on computer duty cycle assumptions.
- The next two slides review known studies/ data on computer duty cycle.



Known Studies on Computer Duty Cycle

	Desktop			No	Notebook		Date	Segment	•	Methodology
	Active- idle	Sleep	Off	Active- idle	Sleep	Off			size	
Ecma-383, 3rd Edition, Annex B	50%	5%	45%	40%	35%	25%	2010	Enterprise	500	Tech sector corporations only.
Microsoft customer experience report	41%	5%	54%	27%	9%	6%	2008	Uncertain, likely mostly consumer and SMB	75,000	Automated tracking and collection. Unknown segmentation. Seems more aligned with residential than commercial, TBD
Barr et al., QDI	85%	15%		55%	37%		2010	Commercial and Enterprise.	110,000	Automated tracking and collection. Corporate power management implementation rates?
Pigg & Bensch 2010	49%	51%		29%	71	%	2010	Residential	81 computers in 50 homes	Automated tracking and collection.
Fraunhofer / CEA 2010	39%	25%	36%	33%	25%	42%	2010	Residential	1,000 homes	Phone survey
Chetty et al.	75%	25	5%	36%	36% 64%		2009	Residential	59 computers in 20 homes	Logging, surveys, interviews
For Reference										
Energy Star v5	40%	5%	55%	30%	10%	60%	2008	All		
Energy Star v6	35% short+ 15% long	5%	45%	25% short +35% long	10%	30%	2012	All		

Robust Study Suggest Significantly Higher **On Mode Than Current Estimates**

Duty Cycle Studies: % On Modes Estimates

Size of bubble indicates study sample size (H/M/L).

(*) Weighted average of QDI data based on 20% comm. computers with corp. power management, 80% without. 14