ENERGY STAR V6 ITI -New Client Category Proposal

EPA/ITI Meeting 1/23/2012

Agenda

- Overview/Problem Statement
- Key Elements of Methodology
- Data Analysis
- Summary/Conclusions

Today's Objective: Methodology discussion only. TEC targets and adders discussion to follow later

Why a New Category Proposal

Issues & Learning

- Entry Errors in dataset (testers are entering wrong data)
 - Graphics Classes
 - Attributes are too complex to understand by tester (Example -Memory Channels)
- Need to separate the lower capability systems from higher capability systems (categories)
 - Current category system based on cores/memory channels as proxy for highend/low-end is not always workable
- Learning from Energy Star V5: Fix dGfx definition issue (Done), and coverage to ensure broad dGfx representation for V6
 - Today V5 systems are approaching 25%
 - Issue replicated globally (ErP, Japan, ...)
- Ecma has defined new discrete Graphics Classes and system categories
 - dGfx based on frame buffer bandwidth (as proxy for GPU performance)

Proposed Resolution

- Automate category enumeration (SW program)
 - Attributes are available in current ENERGY STAR dataset
 - Can write a program to access attributes automatically for future testers
- New Category based on a CPU Perf proposal to separate lower capability systems from higher capability systems
 CPU Perf = [# of CPU cores]*[CPU base freg.]
 - Possibility for easy automation (Both attributes in current ENERGY STAR dataset)
 - Like graphics classes, perf category is a range of Perf values
- Separate iGfx and dGfx categories to allow appropriate dGfx system representation
 - Not competing with lower energy iGfx systems
- No Changes to dGfx classes; Ecma process allows system category changes through the Ecma 383 category registry
 - Similar to graphics class change control

Key Elements of Methodology

Categorization Goal: Establish system categories based on like products with similar capability, within each category.

Today's System Category

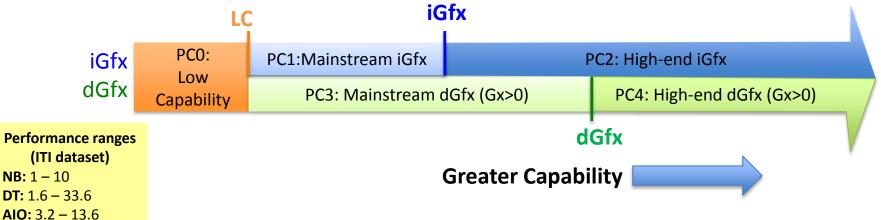
- Category separation based on product attributes
 - Memory Channels, number of CPU cores, Memory Size, etc. are used
 - Analysis shows this no longer works
- Graphics Class separation based on discrete graphics capability (Ecma-383)
 - Bandwidth ranges as a proxy for performance
- Other capabilities that distinguish power
 - Display size and technology (new for V6)
- Additional allowances for other capabilities
 - Hard drives; Audio, networking, TV Tuner (new for V6)

Proposed System Category Changes

- Product Capability (category) based on new CPU Performance Class proposal
 - Ranges of performance based on [# CPU Cores]*[Base CPU Freq]
 - Not a criteria for pass fail, but a system for categorizing products
- Consistent category approach across
 Notebooks, AIO and Desktop computers
 - Cat0: Lower capability systems(iGfx and dGfx systems)
 - Cat1-Cat2: All mainstream and high-end integrated graphics based systems
 - Cat3-Cat4: All mainstream and high-end discrete graphics based systems

No Change to System Categorization Goal

Graphics Classes


Existing Ecma-383 Proposal

• No Changes

Graphics Class	Bandwidth		
G0	Integrated Graphics		
G1	FB_BW ≤ 16		
G2	16< FB_BW ≤ 32		
G3	32 <fb_bw 64<="" td="" ≤=""></fb_bw>		
G4	64 <fb_bw 96<="" td="" ≤=""></fb_bw>		
G5	96 <fb_bw 128<="" td="" ≤=""></fb_bw>		
G6	FB_BW > 128 (< 192-bit)		
G7	FB_BW > 128 (≥ 192-bit)		

New System Categories Concept (based on Performance Classes)

- Similar to dGfx approach, each system category gets its own Performance Class (range of performance within each system category)
 - NB, AIO or DT

Performance Class	Performance Range	System Description
PC0	P < LC	LC=Low Capability
PC1	LC <= P < iGfx	Main stream iGfx
PC2	P > iGfx	High-end iGfx
PC3	LC <= P < dGfx	Main stream dGfx
PC4	P > dGfx	High-end dGfx

V6 Category Proposal (Details)

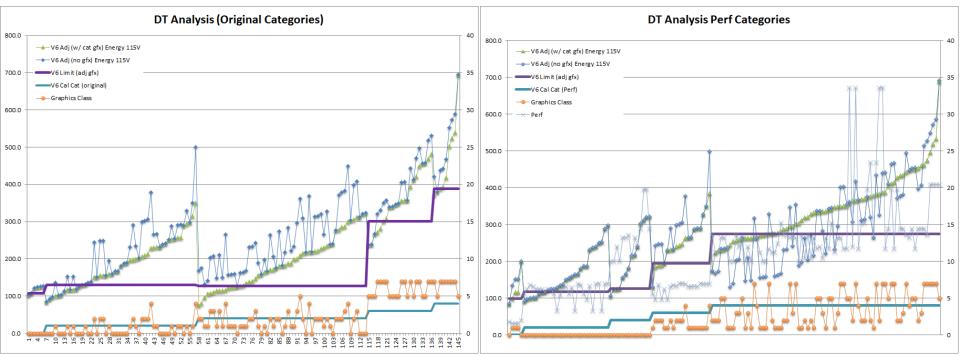
	V6 Original Categories			•	•	-
	Notebook	NB0	NB1	NB2	NB3	NB4
	Market	netbook	lowend	mainstream	performance	high-end
	cores	N/A	cores ≤ 2	cores = 2	cores ≥ 3	cores ≥ 3
	Mem Channels	ch mem = 1	ch mem = 2	ch mem ≥ 2	ch mem ≥ 2	ch mem ≥ 2
g	Screen Size	screen size ≤ 12.1	Screen size ≤ 13.3"	Any screen size	Any Screen size	Any screen size
L N N	Base Memory (GB)	1	2	2	2	4
le c	Base Gfx	igfx	igfx	igfx	igfx	G3
ш́с	Gfx Adders	dGfx ≤ G7	dGfx ≤ G7	dGfx ≤ G7	dGfx ≤ G7	$G3 < dGfx \leq G7$
nt ego						
te l	Desktop/AIO	DT0	DT1	DT2	DT3	DT4
שבים	Market	Entry	Mainstream	Performance	Highend	/ery high end/enthusiast
U C C	cores	N/A	cores ≤ 2	cores ≥ 3	cores ≥ 4	cores ≥ 5
U I	Mem Channels	ch mem = 1	ch mem = 2	ch mem ≥ 2	ch mem ≥ 2	ch mem ≥ 2
	Base Memory (GB)	1	2	2	4	4
	Base Gfx	igfx	igfx	igfx	dGfx ≥ G5	dGfx ≥ G5
	Gfx Adders	dGfx ≤ G7	dGfx ≤ G7	dGfx ≤ G7	dGfx ≥ G6	dGfx ≥ G6
	PCle					PCle ≥ 2

New Energy Star V6 Client Category proposal (CPU Perf based)					
Description	CAT 0	CAT 1	CAT 2	CAT 3	CAT 4
NB Performance (p)	p <nblc< td=""><td>NBLC<=p<nbigfx< td=""><td>p>=NBiGfx</td><td>NBLC<=p<nbdgfx< td=""><td>p>=NBdGfx</td></nbdgfx<></td></nbigfx<></td></nblc<>	NBLC<=p <nbigfx< td=""><td>p>=NBiGfx</td><td>NBLC<=p<nbdgfx< td=""><td>p>=NBdGfx</td></nbdgfx<></td></nbigfx<>	p>=NBiGfx	NBLC<=p <nbdgfx< td=""><td>p>=NBdGfx</td></nbdgfx<>	p>=NBdGfx
DT Performance (p)	p <dtlc< td=""><td>DTLC<=p<dtigfx< td=""><td>p>=DTiGfx</td><td>DTLC<=p<dtdgfx< td=""><td>p>=DTdGfx</td></dtdgfx<></td></dtigfx<></td></dtlc<>	DTLC<=p <dtigfx< td=""><td>p>=DTiGfx</td><td>DTLC<=p<dtdgfx< td=""><td>p>=DTdGfx</td></dtdgfx<></td></dtigfx<>	p>=DTiGfx	DTLC<=p <dtdgfx< td=""><td>p>=DTdGfx</td></dtdgfx<>	p>=DTdGfx
AIO Performance (p)	p <aiolc< td=""><td>AIOLC<=p<aioigfx< td=""><td>p>=AlOiGfx</td><td>AIOLC<=p<aiodgfx< td=""><td>p>=AlOdGfx</td></aiodgfx<></td></aioigfx<></td></aiolc<>	AIOLC<=p <aioigfx< td=""><td>p>=AlOiGfx</td><td>AIOLC<=p<aiodgfx< td=""><td>p>=AlOdGfx</td></aiodgfx<></td></aioigfx<>	p>=AlOiGfx	AIOLC<=p <aiodgfx< td=""><td>p>=AlOdGfx</td></aiodgfx<>	p>=AlOdGfx
Graphics Class	Any	GO	G0	Gx>0	Gx>0
Graphics Baseline	G0	GO	G0	G1	G1
Memory Baseline	1GB	1GB	1GB	1GB	1GB
Note: p =[# of CPU core	es]*[CPU base fre	q.]			

iGfx PC0: PC1:Mainstream iGfx PC2: High-end iGfx dGfx Capability PC3: Mainstream dGfx (Gx>0) PC4: High-end dGfx (Gx>0) dGfx

- Perf Category Baseline:
 - iGfx baseline TEC: 1 GB Memory, No TV Tuner, No discrete Audio, 1 HDD,
 - dGfx baseline TEC: iGfx baseline + G1 class adder
 - Additional adders adjusted to above baseline
- Performance Range: Separate tunable ranges for DT, NB, AIO

Example Notebook Range NBLC NBigfx NBdgfx 2 5.2 q Desktop Range DTdgfx DTLC DTigfx 3 AIO Range AIOLC AlOigfx AlOdgfx 4 6.6 10


Setting Performance Range

- Low-Capability(LC)
 - Set range such that low capability systems are grouped together
- Main-stream Vs. High-end
 - Set range to get even a distribution between main-stream and high-end systems (in separate iGfx and dGfx categories)

Data Analysis

- Example DT charts (original vs. new)
 - Focus on well-behaved TEC trending
 - Distribution of system in each category
- Pass/fail distribution table (original vs. new)
 Note: Today's focus is on methodology only. TEC targets and adders discussion to follow later

Performance Categories/Desktops

- Original Categories
 - Same TEC Limits for DT1 and DT2
 - Similar TEC dynamic ranges between DT1 and DT2
 - Very few systems in DT0 and DT4

- Performance Categories
 - Good separation of TEC limits
 - Even distribution of systems across categories
 - Increasing TEC dynamic range from low to high energy categories

System Distribution (Original vs. New)

Driginal categorysystem distribution

New category

distribution

system

Origina	Original Categories				
Cat	# NB # DT Cat Sys Sys				
0	1	6	8		
1	1	51	17		
2	20	57	14		
3	8	22	0		
4	4	9	0		

Perf Categories					
Cat	#NB	# DT	# AIO		
	Sys	Sys	Sys		
0	2	5	6		
1	8	29	10		
2	3	14	9		
3	10	20	9		
4	11	77	5		


Notebook Range						
NBLC	NBLC NBigfx NBdgfx					
2	5.2	9				
De	Desktop Range					
DTLC	DTigfx DTdgfx					
3	7	9				
AIO Range						
AIOLC	AlOigfx AlOdgfx					
4	6.6	10				

 Performance Class allows finer tuning of the system distribution through performance range

Pass/Fail distribution (Original vs. New)

Original Category

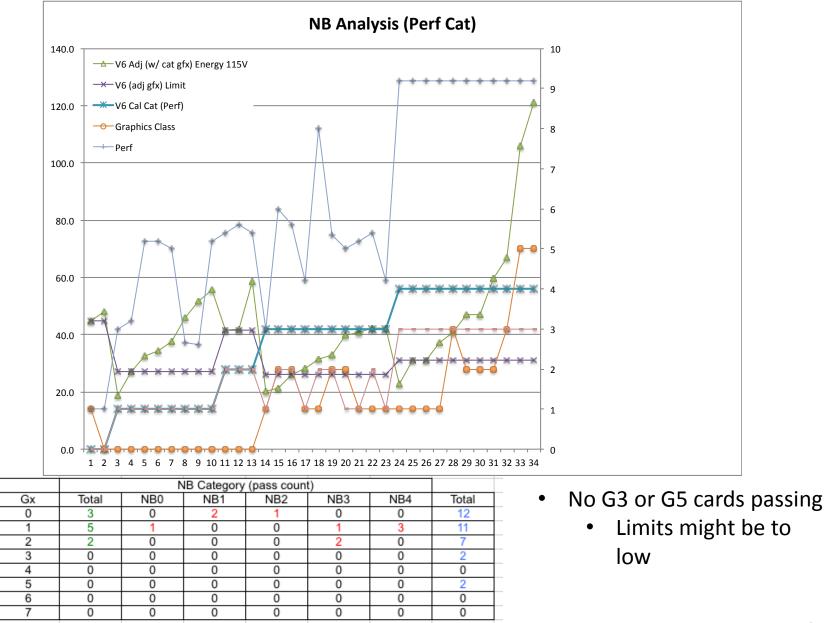
Performance Category

- Graphics class distribution across system Categories
 - Shows good distribution of graphic classes across system categories
 - Graphics adders appear about right

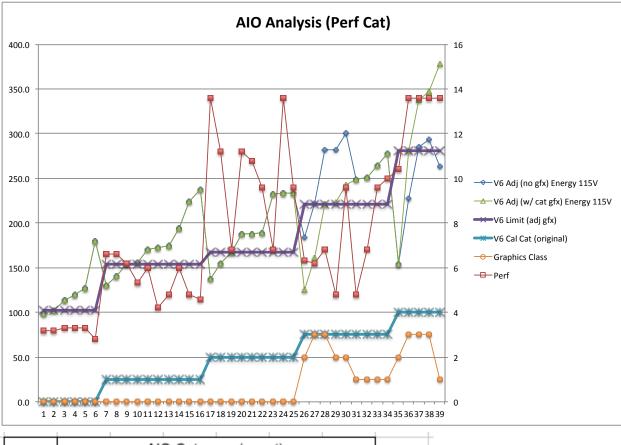
Current Issues

• Limited ITI dataset

Not enough Notebook and AIO systems


- Recommendations
 - Apply full EPA's V6 data set to new methodology
 - Pilot to validate methodology, and get kinks out
 - Report back in 1-2 weeks
 - Final decision after pilot

Summary/ Conclusions


- Current Ecma-383 system category approach has challenges; need a fix similar to dGfx fixes
- ITI is proposing system categorization based on CPU performance, and separating lower capability, and iGfx from dGfx categories.
- Early results are encouraging.
- Will require full EPA V6 dataset to validate methodology and get agreement.

Back-up

Performance Categories/Notebook

Performance Categories/AIOs

	AIO Category (count)						
Gx	Total	AIO0	AIO1	AIO2	AIO3	AIO4	Total
0	8	2	3	3	0	0	25
1	0	0	0	0	0	0	5
2	2	0	0	0	1	1	4
3	3	0	0	0	2	1	5
4	0	0	0	0	0	0	0
5	0	0	0	0	0	0	0
6	0	0	0	0	0	0	0
7	0	0	0	0	0	0	0

- Systems with most graphics cards are passing!
- G1 cards not passing!
 - But many pass in DTs